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NLI BENCHMARKS MERGE

o Disturb lexical overlap heuristic of premise and hypothesis (PH); * Minimally alters already existing NLI datasets;

e Have low lexical diversity; e Preserves underlying logical reasoning;

o Costly, if formed manually; e Does not require human validation by strict minimal changing criteria;

e Syntax non-preserving; e Preserves lexical overlap;

e Unfair, if the data is not similar enough to the training data. e Can add more lexical diversity by adding suggestions from other models;

o Automatic;
e Syntax preserving.

RESEARCH QUESTIONS
ARE LANGUAGE MODELS ROBUST AGAINST MINIMAL VARIANTS OF NLI PROBLEMS?

DO THE LIKELIHOQOD, POS TAG, PLAUSIBILITY, OR MASKED MODELS MATTER?
FRAMEWORK
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METHODOLOGY

e 200 suggestions (v) with bert-base-cased and roberta-base;

e Suggestions tagged with en_core_web_sm;

e Exclude punctuation signs, derviational morephems, different
POS(v), and lower probability(v).

e Required variants ==20;

e 10 random mini-datasets with 20 variants per problem (ALL_Var).

e Evaluate BERT, BART, DeBERTa, RoBERTa.

Pattern Accuracy of Models on Datasets of Different Classes of Replacements. Pattern Accuracy of Models on Nouns (vs. Verbs), and Nouns (vs. Adjectives).
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