

THE MINIMAL EXPRESSION REPLACEMENT GENERALIZATION TEST

MĂDĂLINA ZGREABĂN (PHD CANDIDATE)
UTRECHT UNIVERSITY

TEJASWINI DEOSKAR

LASHA ABZIANIDZE (PI)

GENERALIZABILITY IN NLI

Out-of-distribution (OOD data) NLI benchmarks:

- are important, as in-distribution benchmarks are heuristics-prone [4, 3];
- result in decreased performance [6, 3, 1, 4, 8, 2, 7], indicating a lack of generalization capacity.

SHORTCOMINGS of previous OOD NLI benchmarks:

- disturb lexical overlap heuristic of premise and hypothesis ($P(H|P)$) > which can also cause a lower results [2, 7];
- have low lexical diversity [4, 1];
- are costly, if formed manually [3];
- are syntax non-preserving, which can also cause a decrease in models' scores [6];
- are unfair, if the data is not similar enough to the training data.

MERGE & OUR CONTRIBUTIONS

The Minimal Expression Replacement GEneralization (MERGE) test for NLI automatically & minimally alters existing NLI datasets, keeping their underlying reasoning, without requiring human validation by deploying strict minimal changes criteria.

Research questions:

- Are language models robust against variants of NLI problems?
- Do factors such as the likelihood, POS tag, plausibility, or masked models of the replacement influence models' performance?

DIAGRAM 1

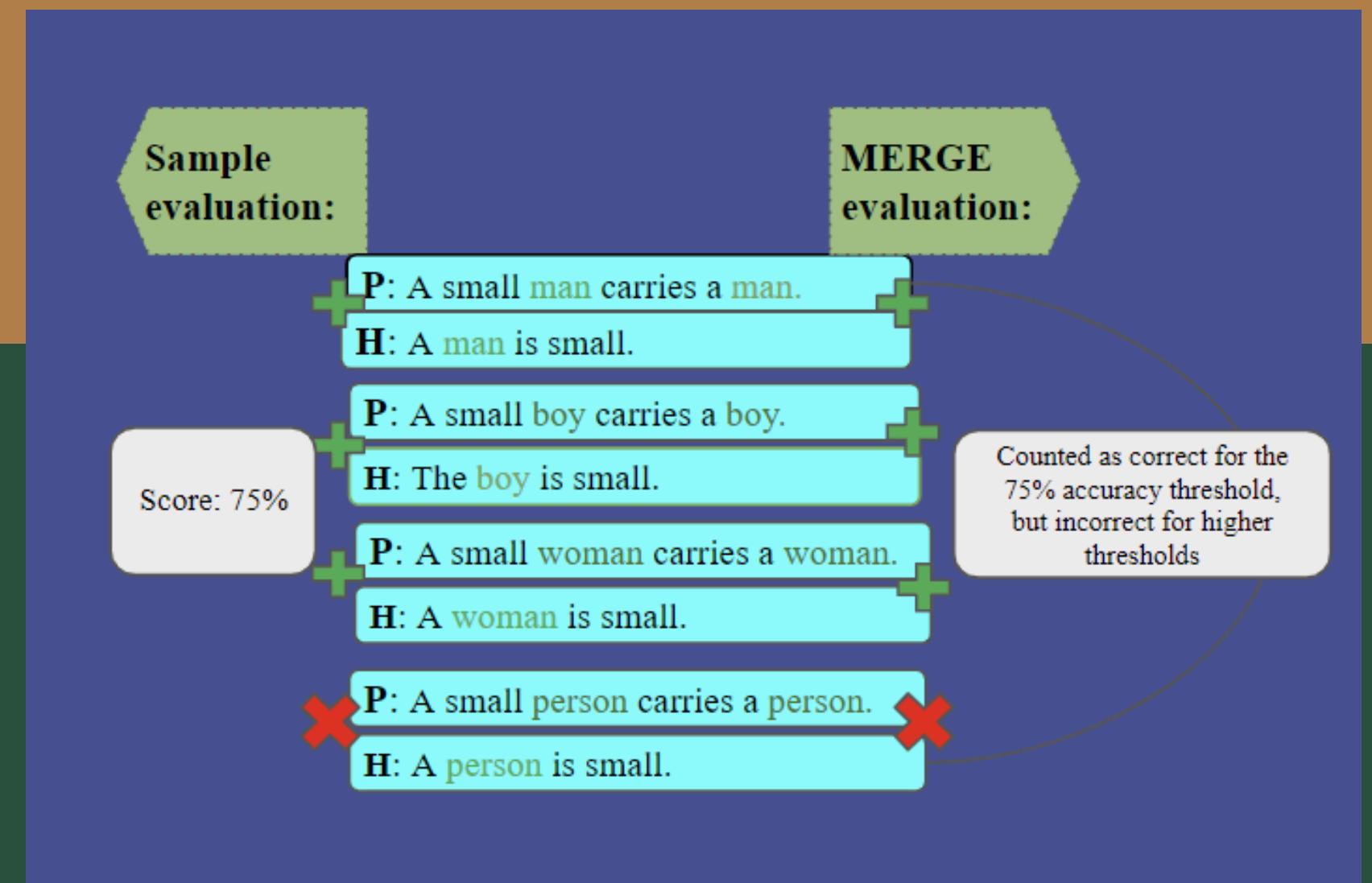
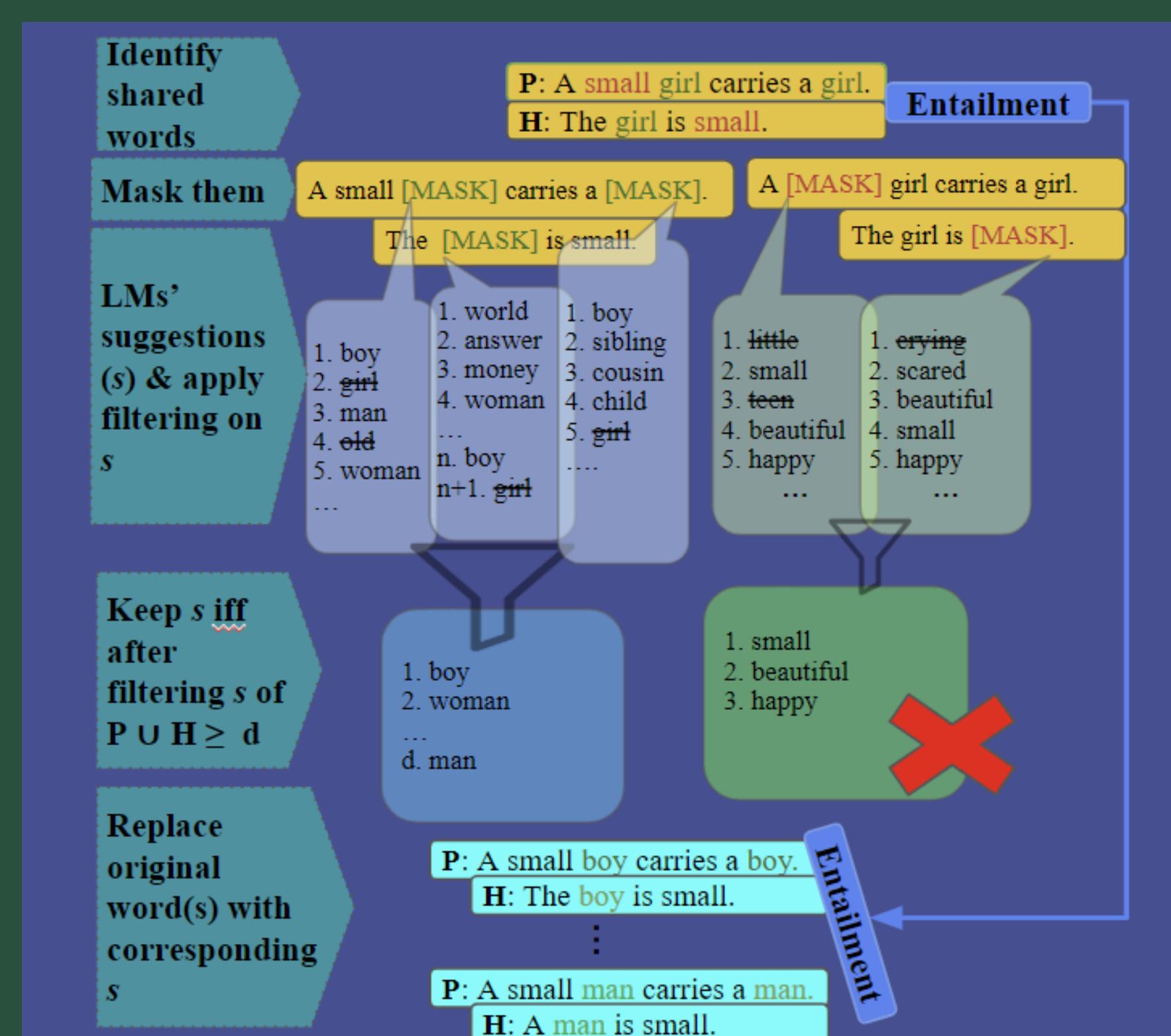


DIAGRAM 2



EXPERIMENTS (DIAGRAM 2)

- Mask shared open-class words w (nouns/verbs/adjectives) in SNLI test.
- Generate 200 suggestions (s) for all occurrences of w with bert-base-cased and roberta-base;
- Tag suggestions (en_core_web_sm);
- Exclude s if $\text{set}(s) < 20$ after filtering out punctuation signs, derivational morphemes, $s \neq \text{POS tag of } w$; $\text{probability}(s) \leq \text{probability}(w)$;
- Variant dataset ALLVar: subsample 20 random suggestions for each open-class category for a NLI problem & replace them in $\langle P, H \rangle$. Repeat 10 times. Statistics shown in Table 1.

MODELS & METRICS

- Evaluated BERT, BART, DeBERTa, RoBERTa on: ALLVar, ALLVar split by open-class categories; ALLVar split by model used to generate suggestions (BERT, RoBERTa, or Both), ALLVar with different filtering criteria for s (scrambled s ; only $s = \text{POS tag of } w$; only with $\text{probability}(s) \geq \text{probability}(w)$; all POS tags and probabilities).
- Metrics: Sample Accuracy (standard accuracy) and Pattern Accuracy (a correct prediction is when the model gets an x amount of variants correctly), see Diagram 1.

Word	Seed	Average	N(%)	C(%)	E(%)	Subs
N _{Var}	3704	144.2	12.5	22.6	46.1	74080
V _{Var}	1129	112	28.1	16.6	55.2	22580
AdjVar	280	79.9	32.5	22.5	44.8	5620
ALLVar	4468	152.8	30.7	21.4	47.7	102280

TABLE 1: STATISTICS OF ALL_VAR

RESULTS

- Low PA scores on high thresholds (Figure 1; 2), compared to SA scores in Table 1, further confirm a lack of generalization of models in line with previous studies [6; 3]. MERGE might disprove only-hypothesis bias, or word associations between NLI problems and certain labels [5].
- Difficulty of open-class categories: verbs, followed by nouns and adjectives (Figure 3; 4).
- On higher PA thresholds, models do better on s from All_Both, and All_RoBERTa (Figure 6), compared to lower PA thresholds (Figure 5).
- No filtering criteria result in lower PA scores (Figure 7), but results could be influenced by other factors.

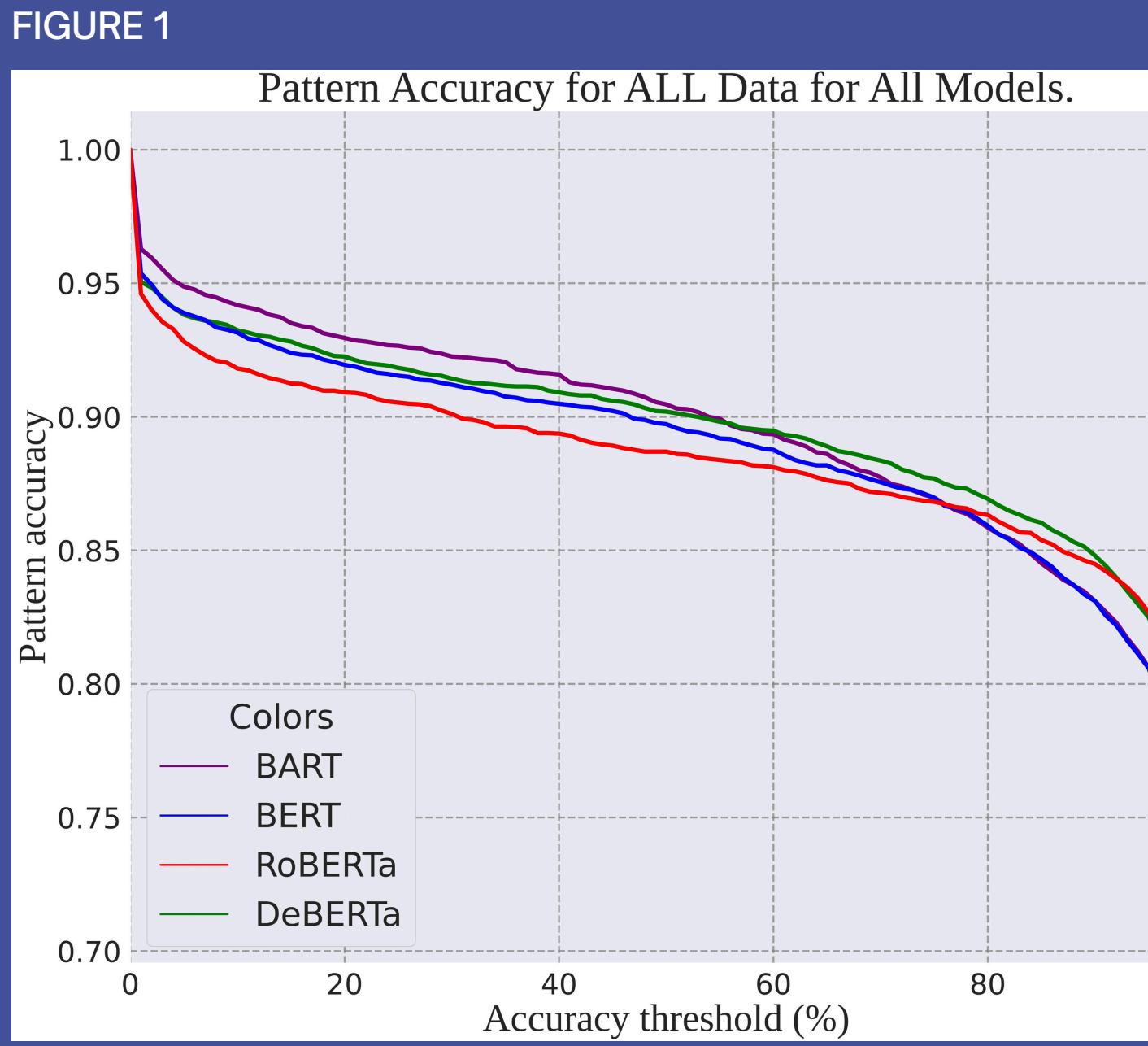
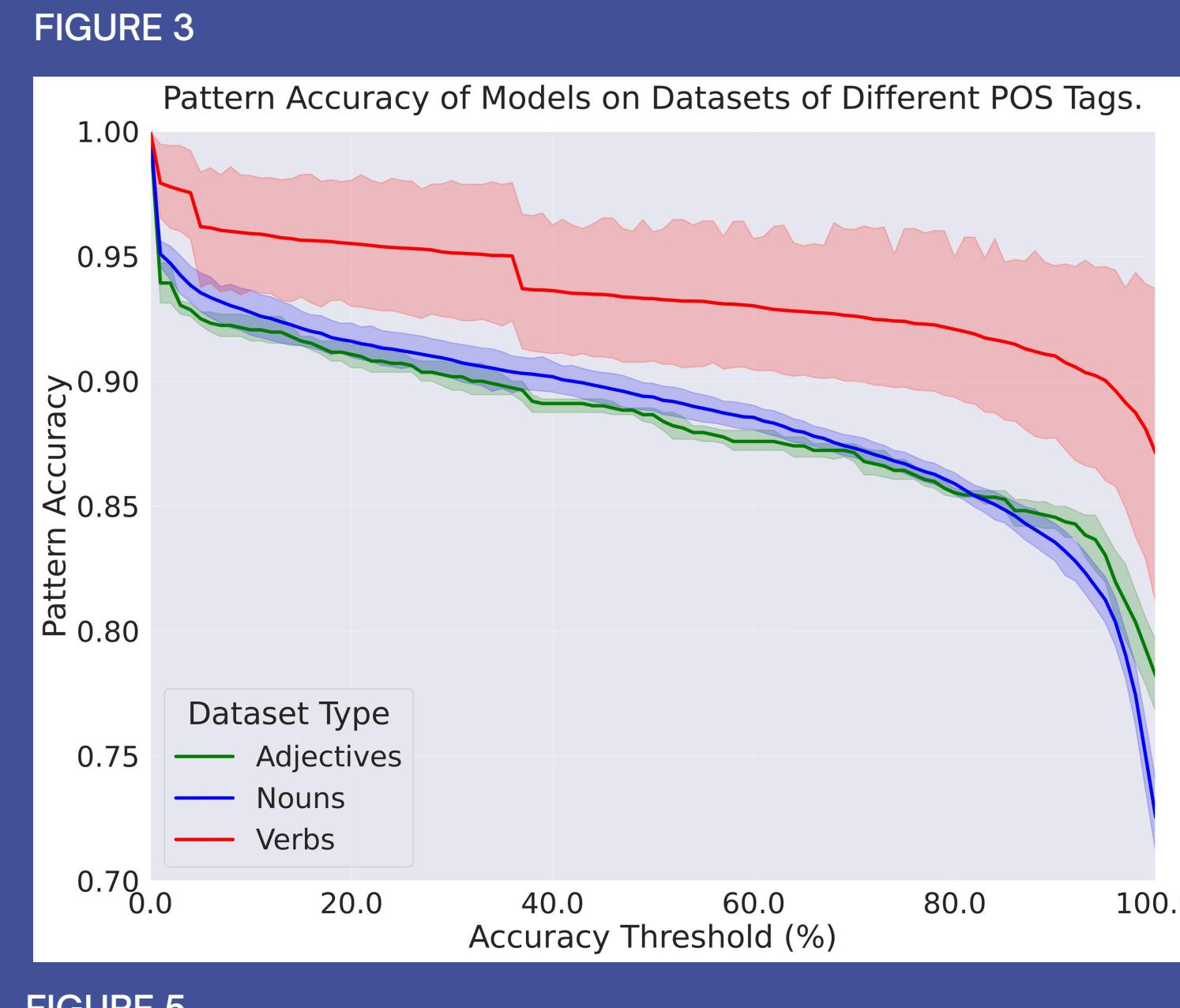
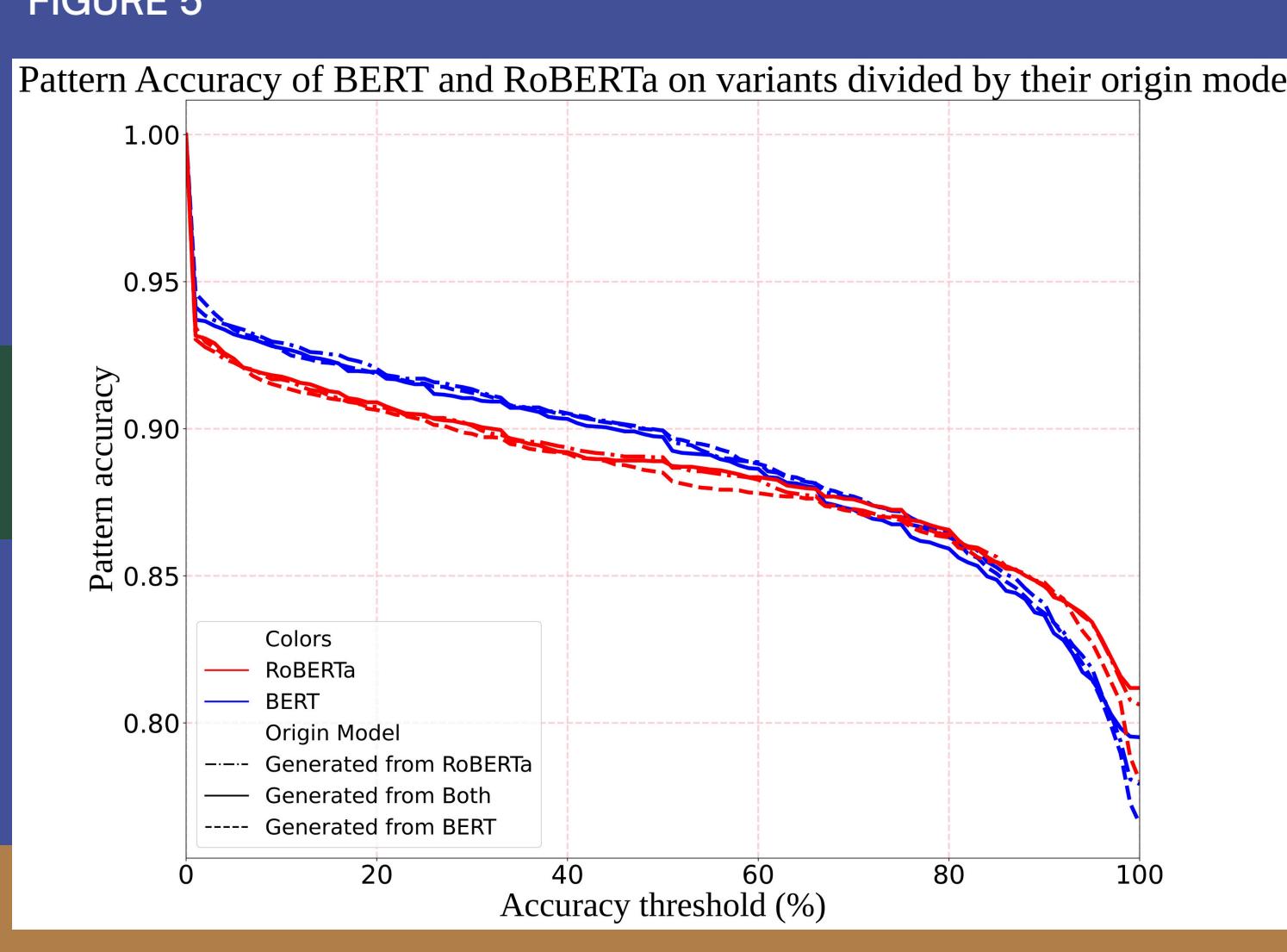
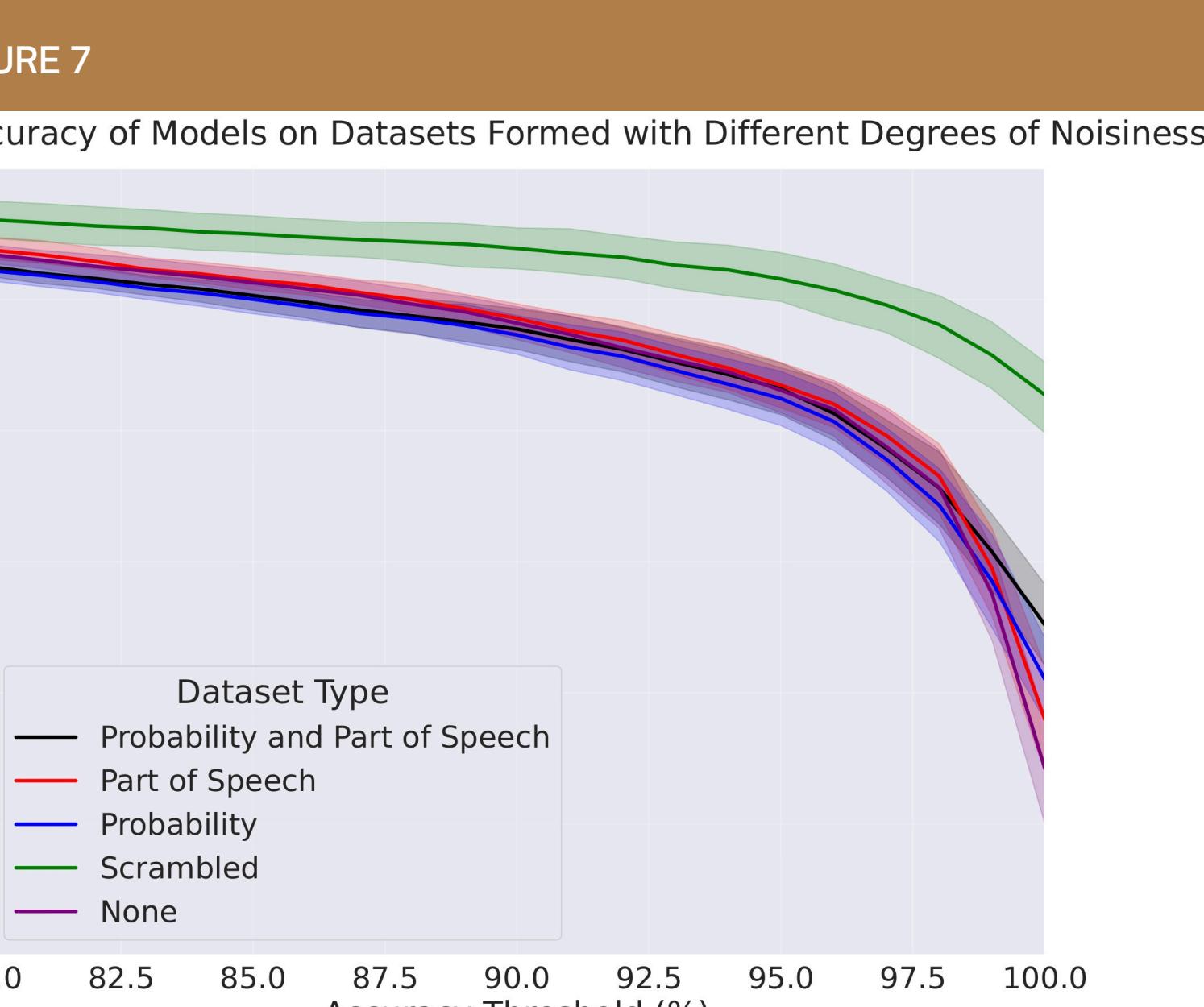


TABLE 2

Model	Training	SNLI _{test}	All _{Seed}	All _{variants}
BERT	S	90.48	90.24	88.72
RoBERTa	S	90.06	89.86	88.50
BART	S, M, F, A	92.03	91.85	89.11
DeBERTa	S	91.70	91.38	89.41

TABLE 3

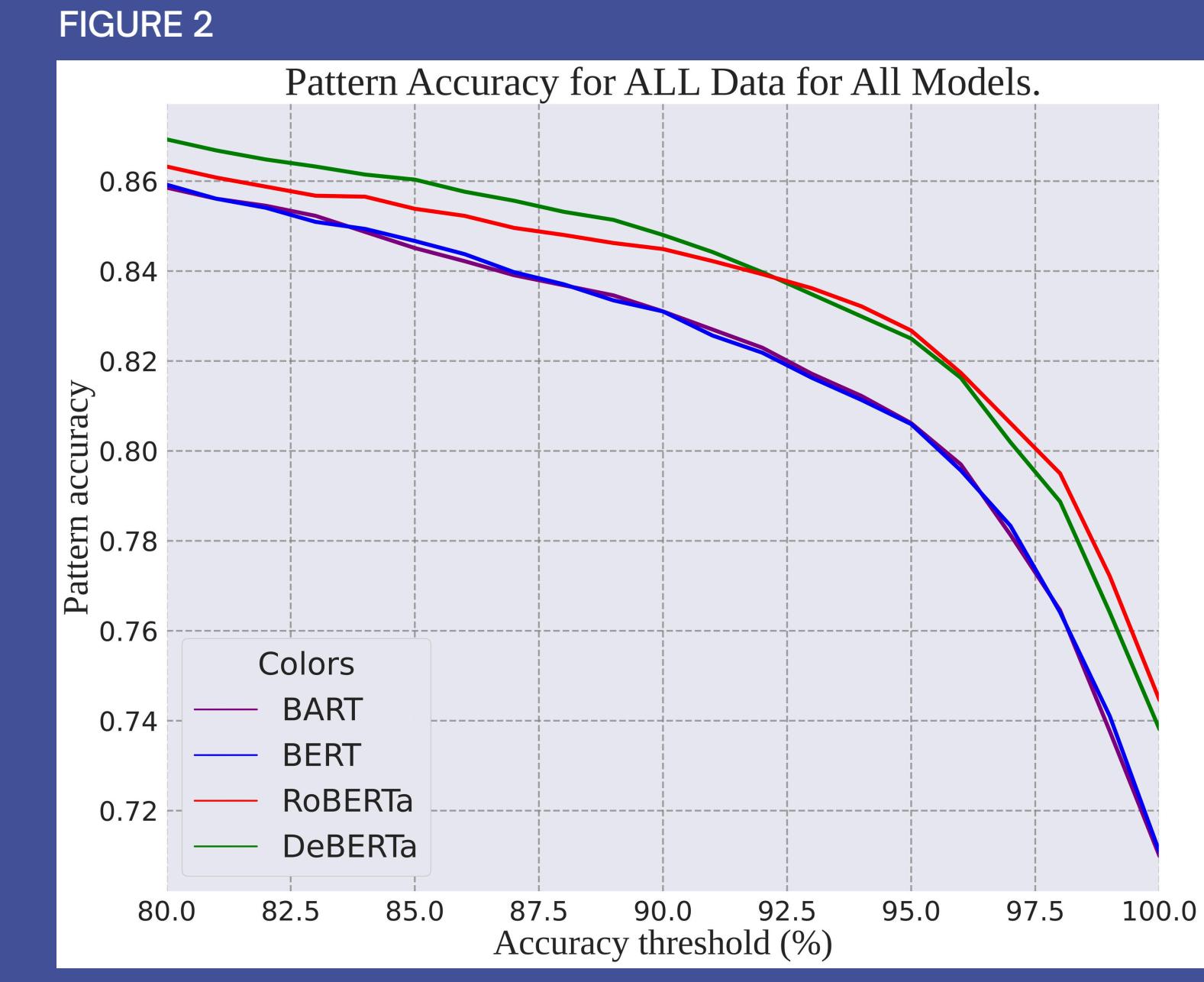
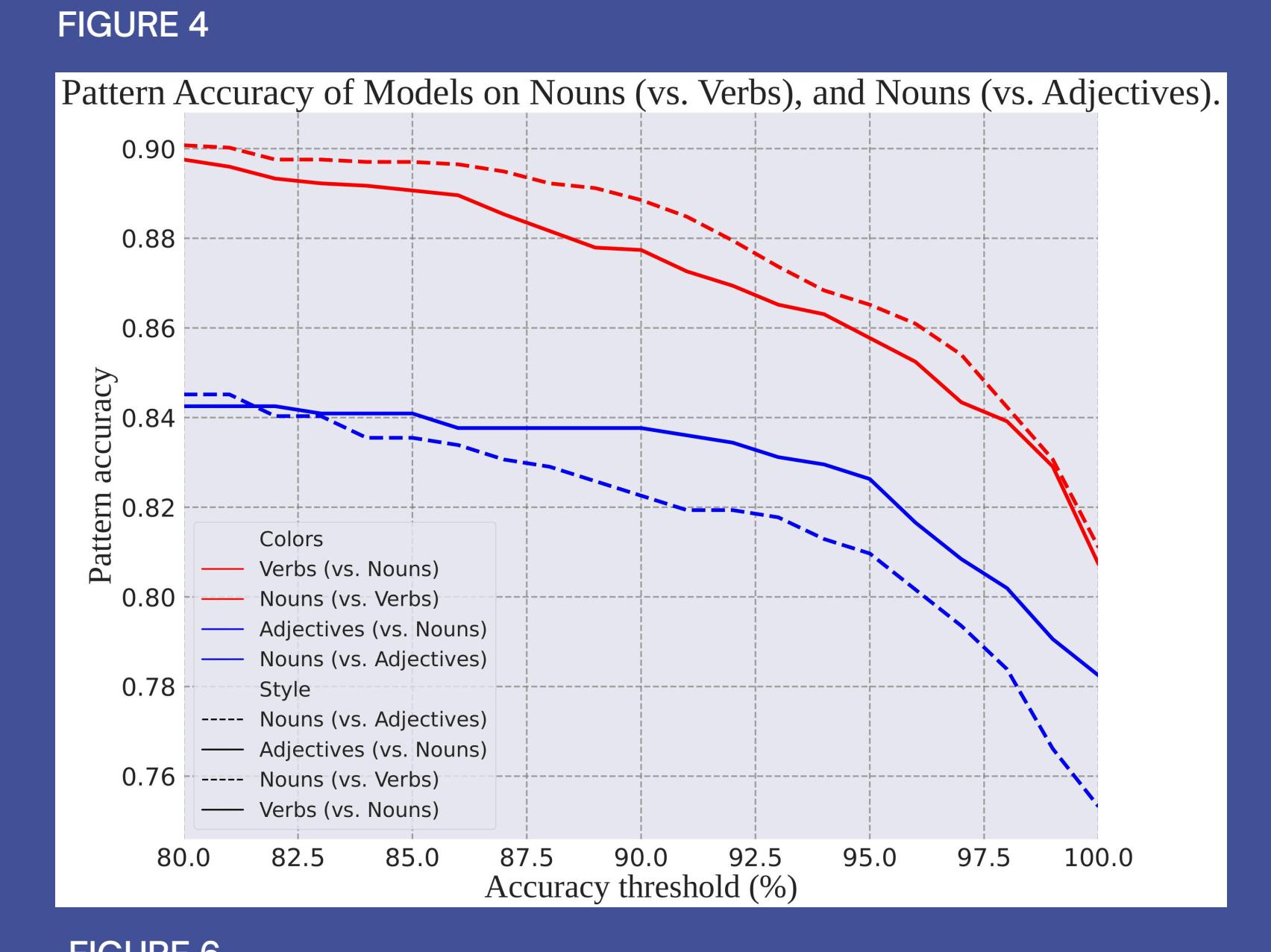
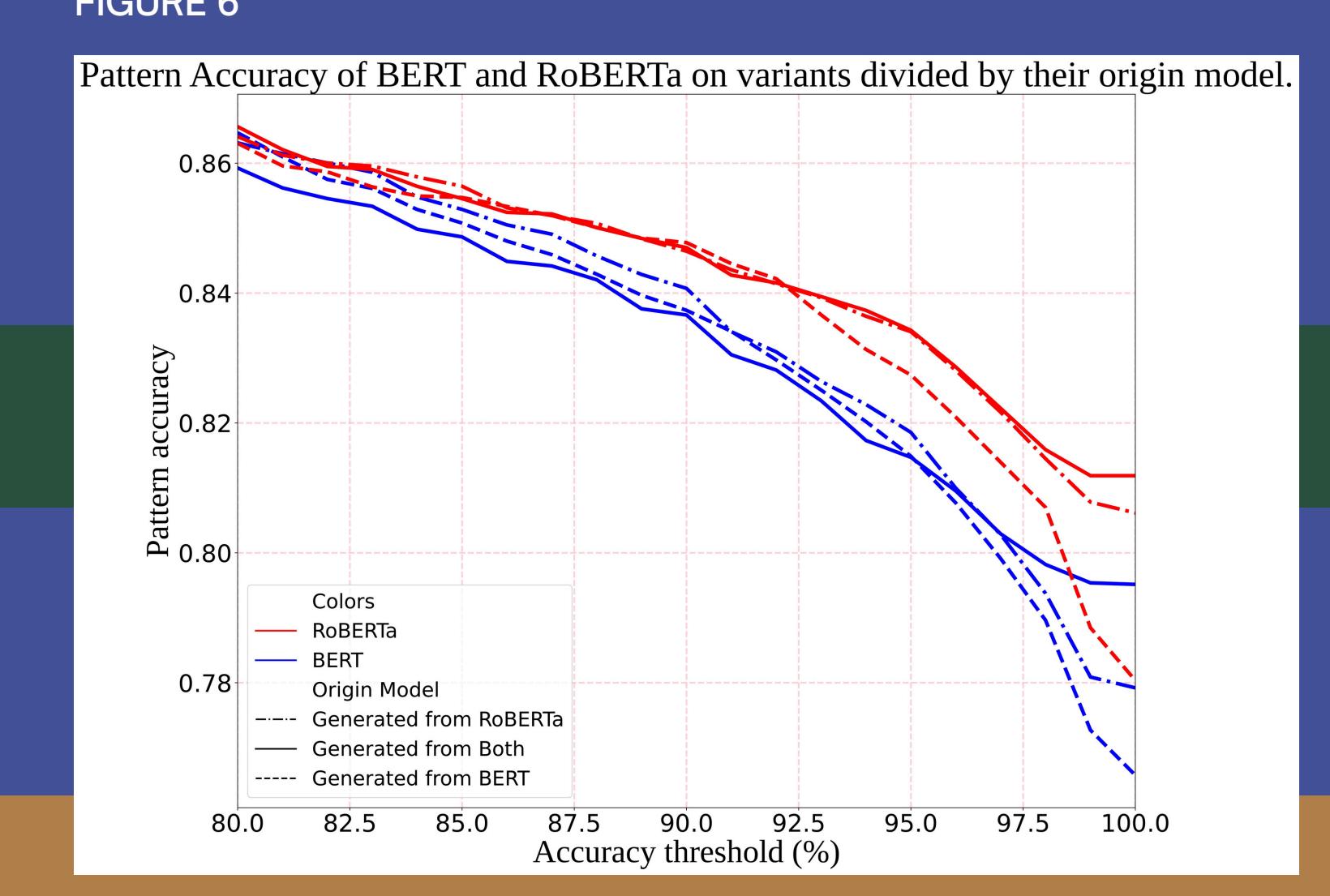
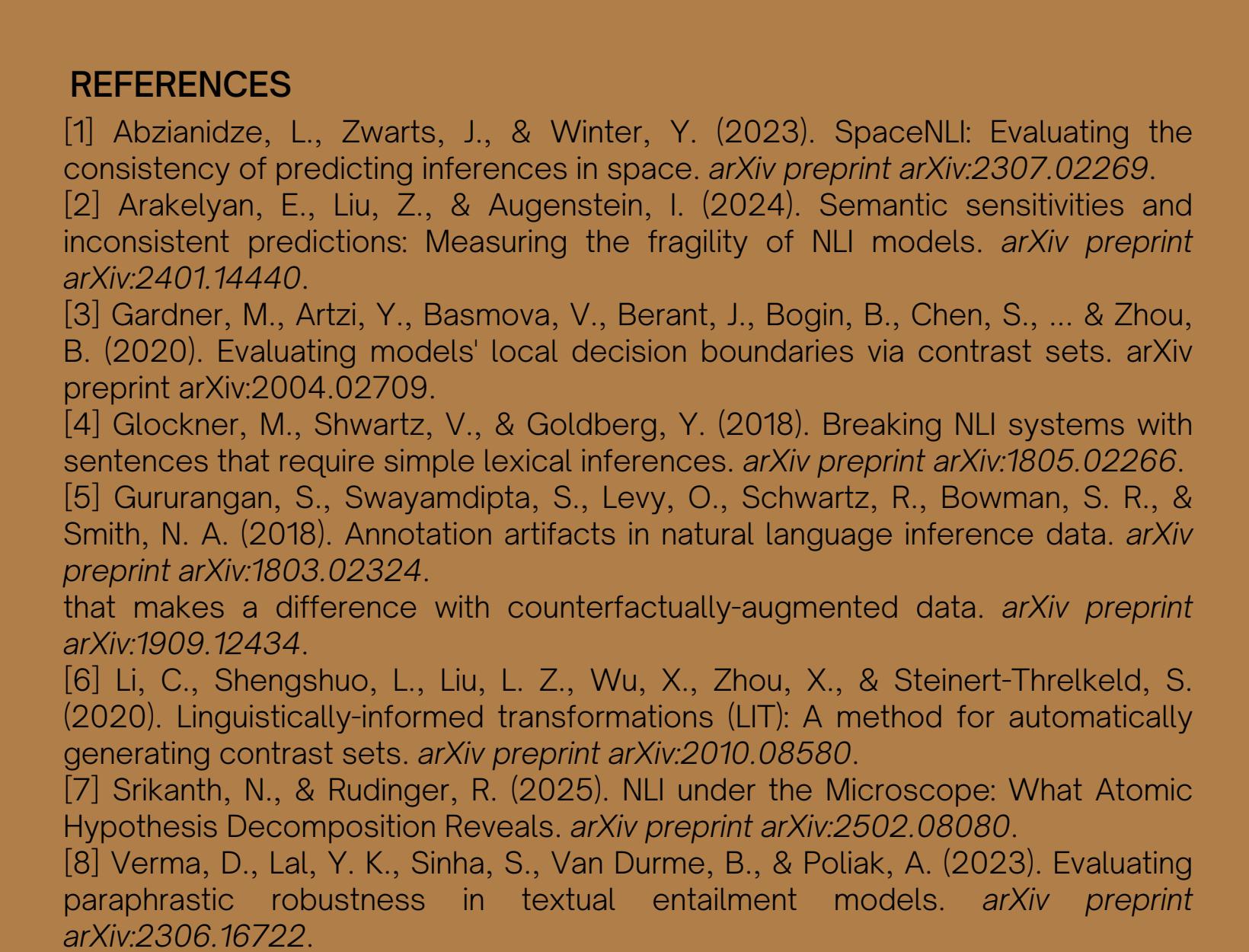
Model	Training	All _{BERT}	All _{RoBERTa}	All _{Both}
BERT	S	88.79	88.55	88.84
RoBERTa	S	88.58	88.33	88.56

CONCLUSION

- Low PA scores on variants dataset > lack of generalization capacities.
- Models' scores influenced by the masked model source of the suggestions, the word category replaced, and by filtering criteria \Rightarrow strict quality control of suggestions is needed.

FUTURE RESEARCH

- Only one dataset modified; more masked models and evaluated models are needed.
- Potential confounds: disagreement the article and the noun, strategy used for scrambled words.



REFERENCES

- [1] Abzianidze, L., Zwarts, J., & Winter, Y. (2023). SpaceNLI: Evaluating the consistency of predicting inferences in space. *arXiv preprint arXiv:2307.02269*.
- [2] Arakelyan, E., Liu, Z., & Augenstein, I. (2024). Semantic sensitivities and inconsistent predictions: Measuring the fragility of NLI models. *arXiv preprint arXiv:2401.14440*.
- [3] Gardner, M., Artzi, Y., Basmova, V., Berant, J., Bogin, B., Chen, S., ... & Zhou, B. (2020). Evaluating models' local decision boundaries via contrast sets. *arXiv preprint arXiv:2004.02709*.
- [4] Glockner, M., Schwartz, V., & Goldberg, Y. (2018). Breaking NLI systems with sentences that require simple lexical inferences. *arXiv preprint arXiv:1805.02266*.
- [5] Gururangan, S., Swayamdipta, S., Levy, O., Schwartz, R., Bowman, S. R., & Smith, N. A. (2018). Annotation artifacts in natural language inference data. *arXiv preprint arXiv:1803.02324*, that makes a difference with counterfactually-augmented data. *arXiv preprint arXiv:1909.12434*.
- [6] Li, C., Shengshuo, L., Liu, L. Z., Wu, X., Zhou, X., & Steinert-Threlkeld, S. (2020). Linguistically-informed transformations (LIT): A method for automatically generating contrast sets. *arXiv preprint arXiv:2010.08580*.
- [7] Srikanth, N., & Rudinger, R. (2025). NLI under the Microscope: What Atomic Hypothesis Decomposition Reveals. *arXiv preprint arXiv:2502.08080*.
- [8] Verma, D., Lal, Y. K., Sinha, S., Van Durme, B., & Poliak, A. (2023). Evaluating paraphrastic robustness in textual entailment models. *arXiv preprint arXiv:2306.16722*.